
-A165 3is PROCESS AND DATA MNANREENT
IN A RECONFIGURABLE 1/1

DISTRIBUTED NETWORK(UO CALIFORNIA UNIV BERKELEY
ELECTRONICS RESEARCH LAB C V RAMAMOORTHY 15 OCT 84

'UCAmFEhDShEEEEEE85 /G /2hE

,ESEEEEEENSh

p6

L3.1

11111.2
1111122L

Iiik

0
FINAL REPORT

in PROCESS AND DATA MANAGEMENT IN A RECONFIGURABLE
DISTRIBUTED NETWORK

-, DTIC

Contract DASG60-81-C-0025 D
(2/27/81 - 10/15/84)

C. V. RAMAMOORTHY
Principal Investigator

D ITION STATEMENT A

Approved for public release;
Distrution Unlimited

0-

K") SPONSORED BY
L.J
jTHE BALLISTIC MISSILE DEFENSE ADVANCED TECHNOLOGY CENTER

" "The views, options, and/or findings contained in this report are those
of the author and should not be construed as an official Department of
the Army position policy, or decision, unless so designated by other
official documentation."

85 12 17 178

SECUITY C.AS31F1CATION OF THIS PAGE (Whwm Date Bnt___ _

REPORT DOCUMENTATION PAGE FRE CMPrTIGOS• BEFORE COMPLI.JNG FORM
A. REPORT NUMBER 1GOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER

-63/t.
4. TITLE I 4od "kdi|) L TYPE OF REPORT 4 PERIOD COVERED

PROCESS AND DATA MANAGEMENT IN A RECONFIGURABLE FINAL(2/27/81DISTIBUTD NEWORK* (227/8 -I0/15/84)

DISTRIBUTED NETWORK S. PERFORMING ORG. REPORT NUMBER

7. AUTHOR) S. CONTRACT OR GRANT NUMEIERfe)

C. V. Ramamoorthy DASG60-81-C-0025

S. PERFORMING ORGANIZATION AME AND ADDRESS M. PROGRAM ELEMENT PROJECT. TASK

Electronics Research Laboratory AREA & WORK UNIT NUMBERS

University of California
Berkeley, CA 94720

i. CONTROLLING OFFICE NAME ANO ADDRESS 12. REPORT DATE

Ballistic Missile Defense Systems Command
Department of the Army I3. NUMBER OF PAGES

P.O. Box 1500 - Huntsville, AL 35807 44
14. MONITORING AGENCY NAME & ACORESS(i different rmm Controlling Office) IS. SECURITY CLASS. (o this report)

unclassified
15o. DECL ASSI FICATION/DOWNGRADING

SCHEDULE

IS. DISTRIBUTION STATEMENT (of this Report)IDISTRIBUTION PTATEME!4TA
AMoved for public teleaselDtftution Uudimited

17. DISTRIBUTION STATEMENT (of Me abstract entered in Block 20, it different frm Report)

,I 1. SUPPLEMENTARY NOTES The views, options, and/or findings contained in this report
are those of the author and should not be construed as an official Department of
the Army position policy, or decision, unless so designated by other official
documentation.

1s. KEY WORDS (Conthue on revre .. side ft necessary and identify by block nrnnber) communi cation protocols,
distributed systems, global information, load balancing, process allocation,
coordination of distributed computation, intelligent control, reconfigurable
distributed system, recovery, multiple copy update, consensus problem, adaptive
hierarchical routing, directory management

20. AESYACT (Cntie -- ,,a rver.e aide If neco.e -nd identW by block aomb) Our objective in this
research is to investigate certain unsolved problems in the design and manage-
ment of distributed networks and thereby to develop design methods, analysis
techniques and algorithms appropriate for such networks. The distinguishing
features of the class of networks under consideration are the dynamic real-time
processing loads as well as dynam4c changes in the topology and connectivity of
the networks and the unreal iable 'r,ture of the Communication links.

(continued on other side)

DO I 1473 EDITION OF I NOV s15 OUSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (Wheft DOnt Rntw'd)

CUamiTY CLA&SIICATiOW OF THIS PA@(Ml DOG AeW

(abstract continued)

The problems we are tackling include the management of global information,
routing control, the design/analysis of communication protocols, process
allocation, load balancing, coordination of distributed computation, and
intelligent control.

Sq .C

-'

i ;.~ ;.j:~iIYCASPC7O PT45Etrd

,

A ABSTRACT

-- Ot- objective in this research is to investigate certain unsolved problems in
the design and management of distributed networks and thereby to develop design
methods, analysis techniques and algorithrs appropriate for such networks. The
distinguishing features of the class of networks under consideration are the
dynamic real-time processing loads as well as dynamic changes in the topology and
connectivity of the networks ad the unreliable nature of the communication links.

The problems e 're include the management of global information,
routing control, the design/analysis of communication protocols, process
allocation, load balancing, coordination of distributed computation, and intelligent
control.

Accesion For
NTIS CRA&IDTIC TABUnannounced

Justification E

...
By3

Distrib tion -----....-.

Availability Codes

Dist Avail and orSpecial

% 6
LA

Table of Contents

1. In trodu ction .. 1

2. Global Information Management 5

3. R outing Techniqu e ... 14

4. Communication Protocol Synthesis 18

5. Control Schemes for Process Allocation 22

6. Load B alan cin g .. 25

7. Coordination of Distributed Computation 27

8. Intelligent Control in Local Distributed Environment

o.o.o. . o.0° °.o o.o. o ° oo oo .o o o . ° o ° 3 3

9 . S u m m ary .. 3 7

R eferen ces .. 39

D istribution List .. 42

Appendix .. 45

1,

!,ZL

1. INTRODUCTION

1.1. Overview and Objectives

Our objective is to investigate certain unsolved problems in the design

and management of distributed networks and thereby to develop design

methods, analysis techniques and algorithms appropriate for such networks.

The distinguishing features of the class of networks under consideration are

the dynamic changes in real-time system processing load as well as the

dynamic changes in the topology and connectivity of the network and the

unreliable nature of the communication links.

The problems we are tackling include the management of global

information, routing control, the design/analysis of communication

protocols, process allocation, load balancing, coordination of distributed

computation, and intelligent control.

1.2. Research Motivations

A key function of a distributed network is to allow nodes to share

information. We call such information global. Global information may be used

for control purposes, e.g. node status, routing tables, etc. or it may be data

used by multiple users, e.g. database files. However, the distinguishing

features of dynamic networks mentioned above make the management of

global information extremely difficult. The information must be transmitted

to the recipient(s) reliably in the presence of malfunctioning/malicious

nodes quite apart from the problem of connectivity. Consistency must be

maintained in spite of concurrent accesses(the synchronization problem),

replicas of information must be consistently and efficiently managed(the

multiple update problem), the consistency must be restored if some

operations do not complete(the recovery problem), the information must be

distributed to conform to access patterns (the data allocation problem), the

global information must be easily accessible to the users(naming and

accessing problem), and the recipient of the global information must have

some guarantee that the received information is up-to-date(the currency

problem). We will examine these problems in Chapter 2.

L " .,.

-2-

In order to convey global information among nodes in the dynamic

environment, we need routing control. As the network size grows larger and

larger, both centralized and distributed conventional routing algorithms

become less suitable. The difficulties come from the excessiveness of the

communication and computation overhead involved. Instead, hierarchical

)schemes would have to be used. On the other hand, as the networks under

study are dynamic and unreliable in nature, the routing schemes should also

be adaptive and distributed. We will examine the routing problems in Chapter

3.

The exchange of global information must be performed in accordance

with communication protocols. In order to maintain reliable and smooth

operations in dynamic networks, several classes of communication protocols

are needed. Configuration control protocols are used to report any topology
' and connectivity changes. Reliable end-to-end protocols are used to reliably

and efficiently transmit network control information and user traffic.

Channel access control protocols are necessary to effectively share the

common channel among users. Therefore, efficient protocol analysis

techniques and protocol synthesis methods are needed to ensure the

correctness of the above mentioned protocols. We will examine the problems

of protocol analysis and protocol synthesis in Chapter 4.

A distributed computation is usually defined as multiple processes

working collectively towards a common goal. These processes interact with

system objects distributed over the nodes, and they also communicate with

each other. Overhead is incurred due to their consumption of system

Xi resources, such as processor time and communication bandwidth. In

particular, if a lot of inter-node data communication is required, the

communication overhead may impose a significant performance penalty on

the distributed computation. We will address the problem of process

- allocation in a computer network environment and find a solution so that

system resources can be more effectively utilized using our process allocation

scheme. This is discussed in Chapter 5.IBesides the process allocation, we are also interested in the general

problem of load-sharing which also addresses the problem of process

U.

'S -3-

migration among network nodes. Load-sharing is a policy for redistributing

the aggregate demand among the processors in the network so that the

overall performance of the system improves. Optimal load-sharing requires

foreknowledge of the runtime characteristics of all processes and is

computationally expensive. An approach to a suboptimal solution is

discussed in Chapter 6.

To support distributed computations, we must also consider the problem

of coordination among nodes that participate in the computation. A

computation may involve resources distributed all over the network and

complex interactions among processes. We propose to develop a distributed

s Makce program that is more powerful than the current version of Make

program which could only take care of computations run on a local machine.

The basic idea is to use a Maicefile to specify the data dependence and

*- control dependence of a particular distributed job and to have a distributed

Make program to distribute the load of computation to different nodeq to

achieve high parallelism and handle the coordination among different nodes.

Moreover, it would facilitate users in different nodes to develop software or

document cooperatively. Combining with the process allocation strategy and

process migration strategy, a distributed Make program would help

distributed computations to achieve high resource utilization and the

desired degree of fault tolerance for particular application. In the context of

large dynamic networks, this would help save some precious computation

results in a dynamically changing environment and satisfy the goal of real

time processing. The related issues are discussed in Chapter 7.

Finally, we are also interested in the application of both Artificial

Intelligence and Database technologies to a dynamic network environment to

solve three major problems:

(a) Communication Subnet Interconnection Problem

(b) Query Processing Prolem

(c) Intelligent Control Problem

".. These problems will be addressed in Chapter 8.

&k M &A r.

-4-

In Appendix, we attached all the dissertations that have been published

under this project.

I

.5-

-5-

2. GLOBAL INFORMATION MANAGEMENT

2.1. Introduction

Gtobua Information is information which is derived from, and is relevant

to all the nodes in a distributed system/computer network. It is used for

various applications, with status maintenance and consistency of data and

processors, being among those of prime concern. With the increased

importance of distributed systems and networks, the need for global

information cannot be overemphasized. When we talk of information which

can be derived only from all the nodes in a network, we immediately run into

difficulties. One of the main ones is that any single node has but a partial

view of the whole system and hence can by itself make no decisions that are

of global consequence. The system has to be faut toLera t in lieu of the fact

that some of the nodes could stop functioning; and the system has to be

failure resilient to a certain degree too. Real-time systems for critical

applications should be able to manage computer resources in such a manner

so as to be fault tolerant in the presence of hardware and software failures.

The following issues have to be tackled by GLobal Irformation Management.

2.1.1. Collection and Dissemination

The possible existence of malfunctioning components, i.e. failed links,

crashed nodes, network partitions or relaying of incorrect information,

makes the collecting and distributing of information from one or more nodes

a difficult task.

2.1.2. Synchronization

When we are trying to access global information by means of

concurrently executing processes, we ought to maintain a high degree of

concurrency in the access itself. This leads to synchronization problems. The

various processes accessing an item of data have to be what in database

terminology is known as seriahzabLe. This essentially means that for some
particular interleaved execution of these concurrent processes there exists
some strictly serial schedule of execution which achieves exactly the same

'I'' . .,, " 2 ' -' 2 -' .,.... - . -. - -.-. . -,-. .' . . ' - - .- -.- .. . - .. - . . . - . . - . . -

~-6-

effect. Various methods using locking, timestamps, tickets, tokens, etc. have

been used to solve this problem in centralized and distributed databases. The

same problem arises in the context of operating systems when shared data

structures like I/0 service queues and buffers, memory buffer pointers, files,

etc. have to be manipulated. However, shared data structures are more

difficult to maintain in distributed systems.

2.1.3. Currency

A change in global data cannot have its effect propagated to every

relevant site instantaneously. There is some finite delay involved, which is

dependent upon the characteristics of the network and the algorithms used

Computations made on the basis of old data can have unprecedented, and

often undesired and sometimes even unpleasant consequences. The degree of

unpleasantness is a function of the application at hand. For example, a query

decomposing algorithm which proceeds on the basis of old information can

be recovered quite simply. On the other hand several distributed deadlock

* '. detection algorithms have been known to fail in the presence of race

conditions, which results from the non-zero delay in the network. Actual

deadlocks may be hidden while spurious ones spring up.

2.1.4. Recovery

On talking of recovery, we always think in terms of having some state

information upon which we can rely. In case of failures or crashes we can go

back and restart from this reliable state. This brings us to the concept of

atomic actions, or what in database terminology is called as a transaction. A

consistent state is defined as being a state in which some invariant

assertions on the global information are satisfied. An atomic action is one

which takes the system from one consistent state to another consistent

A-I state. These atomic actions are not actually so, and hence they may abort (

due to software or hardware failures) when the system is not in a consistent

state. In this case it is the duty of the recovery manager to restore the

system to a consistent state, usually the one just before the start of the

current atomic action. The concept of atomic actions has been extended to

-

give rise to the idea of recovery blocks intended to provide error detection

and recovery for both hardware and software failures. A recovery block has a

primary alternate, zero or more secondary alternates, and an acceptance

test. The primary alternate is the one executed under normal, error free

conditions, and the acceptance test successfully passed. In case an error

occurs, the secondary alternates are tried one by one, with exit from the

block taking place as soon as acceptance test is passed after any of them.

However, if all of them fail, the recovery block is said to have failed, and we

have to go back to a recovery block at a higher level (recovery blocks can be

appropriately nested). Conversations[RAIN 751 and fault-tolerant monitors

[KIM 793 are applications of the recovery block concept in the context of

0- communicating processes.

2.1.5. Multiple Copy Update

A consideration of prime importance is the degree of replication of

information in a distributed system We also are concerned with their

disposition on the various sites and strategies for runtime management. A

large number of copies result in a small read access time and high reliability

but have a high updating cost (in terms of the time required and the

message traffic generated). We have investigated the problem of selecting the

number of copies and their disposition assuming a simple strategy for

updating them [WAH 79]. This is the problem of file allocation and most

probably is not amenable to a polynomial time solution. [WAH 79] has

developed efficient heuristics for the same problem. Many strategies for

handling this problem are available ,viz. updating all the copies before

allowing another update to start, updating a single copy and then relying on

this copy to propagate the update to others, updating a majority of copies,

etc. Each of these strategies is suitable under a different set of conditions.

In case the number of data copies is small, and the read requests far

outnumber the update ones, the first strategy is clearly superior. In case we

have too many copies and frequent updates, the second strategy yields better

results. We can think of hybrid strategies too.

;~~~~~~~~~~~~~~~~~~~...,.,./,.,.::x:..-... -.... :.... ,.....,-. ,.....----..-..- ..-.- ...------. : .

2.1.6. Data Distribution

This is the task of placement of the various copies of global data at

judiciously chosen locations in order to optimize some parameters like

communication cost or response time. Some dynamic and adaptive scheme

would most probably lead to the optimal placement, since it depends on the

access request patterns. However, it would be a non-trivial job to implement

such a scheme. A vast amount of literature exists in this field and a survey

can be found in [WAH 79]

2.1.7. Naming and Cache Consistency Problem

There should be a systematic way for users on the network to access

global information. One way is to register different pieces of global

information in a name server or registration server [BIR 82]. Users can

obtain the necessary information by consulting the name server without

broadcasting to get it. However, resolving the name reference may incur

much overhead on the application program One solution is to cache the

resolved references at local sites for later use; but then we have cache

consistency problem. We will develop a scheme to remedy this problem

efficiently.

2.2. Research Summary

2.2.1. Synchronization:

For the various nodes in a distributed system to be able to work in

"' collusion towards a common goal, some form of synchronization mechanism

P 'is essential. The mechanism has to be such that every node in the network
has roughly the same idea of time. Past research has shown that the

4 availability of such a mechanism enables us to construct algorithms which

can tackle the synchronization aspect of most of the application problems. A

mechanism (called the Globat aock Mechanism) [GAN 84] has been developed

to achieve the necessary synchronization. The GtobaL alock is a virtual clock,

,A6 which is implemented using the local clocks at each node. All messages in

the system are timestamped before being sent. Algorithms have been

- 9-

developed to ensure that the drift between any pair of local clocks is less

than some prespecifled tolerance limit. Whenever a message is received its

timestamp is compared to the clock value at the local host. If the value of

the local clock is lesser than the timestamp, the clock is bumped forward to

a value greater than the tirnestamp. In this way it is ensured that the various

local clocks in the network will be close to each other. Algorithms have also

been developed to enable reconfiguration, i.e. ensuring that a node, which

stopped functioning at some point in time, can reset its local clock to be in

synchrony with the local clocks of other nodes.

2.2.2. Multiple Copy Update:

Fault tolerance requires that critical data be replicated and stored at

more than one node in a network. However, this replication leads to certain

new problems in information updating. Now care has to be taken to ensure

that all the replicas of the data be consistent whenever a transaction (i.e. a

retrieve or an update) is to take place. Various solutions to this multiple-

copy update problem have been suggested in the past. Most of them tend to

be either too conservative (i.e. too careful to prevent any inconsistency in

the data) and hence very slow, or not reliable enough (performarwe

aLgorithms which allow for only one of the copies of the data to be updated

before returning a done, banking upon this copy to update the others). A

technique, based on hot and uiarm copies of data[GAN 64], has been

developed which is reliable and has a better performance than the existing

schemes. Among all the sites having copies of a data item, one is designated

as the primnr site. The copy residing at this site is always the most recent

one. It also has the responsibility of initiating updates and returning a

N\ completion message to the user process. In the database sense it can be

thought of as the transaction coordinator. There is a set of sites which are

designated as hot sites. These sites are also the most recent ones, and form

the set of sites which have to be updated by the primary before a 'done' is

returned to the user process (by the primary). There is also a set of sites

called the w#arm sites. The version of data on these is not the most recent

one, rather updates are sent periodically from one of the hot sites to each

-10-

warm site. When an update is being processed, further updates have to be

locked out only for the time that it takes to update all the hot sites. An

additional advantage accrues if we have a lot of such reads which are not

particular about the data site being absolutely current. In such a case one of

the warm sites can supply the requisite information.

In the event of failure of the primary site, one of the hot sites becomes

the primary automatically. When one of the hot sites crashes, one of the

warm sites becomes a hot site, by getting updated. While this is going on, no

more updates can be proces. ed. However when a site is becoming warm, no

such locking or waiting is necessary. This technique is fault-tolerant since it

has the provision of enabling a recovering node to update its copy of the data

before it gets operational.

2.2.3. Consensus Problem (BGA Problem):

The Byzantirw Generals Agreement(BGA) problem is an abstraction of

the familiar problem of a number of nodes reaching consensus over the value

of some datum in the presence of failures (crashes and malicious behavior

of nodes). This has been found to be an exceedingly complex problem to

tackle. Lot of research has been done in this area and many algorithms, both

deLterministic and probahitistic, have been put forward. The solutions

discovered are very expensive, and hence not amenable to actual

implementation. The communication overhead required in terms of the

number of messages is exponential. Recent research shows that under some

restricted types of failures, and making some assumptions about the

behaviour of the processors and the communication medium, we can get

polynomial solutions. However, these polynomials are of quite high order.

We have developed a new model for the consensus problem and call it the

Generalized Byzantine Generals Agreement (GBGA) problem. Algorithms have

been developed to solve this problem under various conditions. In the

consensus scenario, we have a set of processors, each of them having a value

for some datum Each of them has to transmit its value to all the non-faulty

processors. In the standard BGA algorithms, the way this is done is to let

each processor having the data work as the general once. This processor

x" -11-

transmits its data to other processors, and they go ahead and reach

consensus on its value among themselves. For the whole problem to be

solved, the BGA algorithm for one general has to be run N times (if there are

N processors wishing to transmit data). Our approach has been to let the

consensus reaching on all the values proceed in an interleaved manner;

analogous to the requirements of strong and ueak consistency conditions

for database updates. This approach seems to have promise as it has

potential for high degree of parallelism

Howcver, we have not carried out any experiments so far which could

give us a measure of the actual execution speed, and hence the usefulness of

the algorithms developed for the GBGA model.

2.3. Future Research Tasks

In the following sections, we give more detailed discussion of some

specific topics to be studied in future.

2.3.1. Collection of Global Information

The collection of status information would be much easier if we have a

fully connected network, like Ethernet. A process could be assigned the task

* .~of monitoring messages passing on the network and collects interesting

information, similar to the idea of Publishing [POW 83). We'll call this

process a Demon and let it have the capability of the accepting requests of

the following form I event, action J. This is an extended idea of the

event handler of [BAL 79]. The kind of events we would usually be interested

in is the failure or overloading of nodes. If a process is interested in finding

out when or whether a node fails, it can send a request to the daemon, and

i! i' the daemon process will take the responsibility of watching the status of the
node. 'Whenever that node fails, a message or mail as specified by the action

may be sent to the process which initiates this request. Note that the action

may be quite general; it can be an abortion request for sorne computation, or

it may be a request to initiate a new computation at some particular node.

This I event, action I pattern is quite similar to the paradigm of production

system

-12-

There are two reasons for adopting a daemon in the network:

(1) The daenon may watch the node status for different application

programs so that message traffir, could be reduced substantially than in

the case that each appli:ation process has to periodically send messages

to detect failures. Fur'.hermore, the daemon sends messages only when it

detects that a node has not been sending message for quite a while.

(2) The daemon is an expert in watching status and taking particular

actions. It can be built as a separate module and thus its capability can

4N be enhanced without modifying each individual application program.

We will look into the design issues(e.g. fault tolerance of the daemon)

involved in building a daemon and to explore its applications. In large

dynamic networks, there will be the problems of exchanging information

among daemons and of constructing global view from the information

provided by the daemons.

2.3.2. Distribution of Global Information

Different pieces of global information may be replicated and distributed

all over the network. To facilitate the access of these global information, we

propose to use an extended registration server and a caching scheme to

provide reasonable performance. The extended registration server is capable

of storing different types of registries according to the characteristics of

different pieces of global information. Furthermore, we may generalize the

idea to an Object Server, i.e. each object is an abstract data type and has its

associated operations. This would provide a certain degree of security and

itnformationsealing. However, this is an open research problem, and many

issues need to be studied.

To solve the cache updating problem, we may employ the idea of deamon

process mentioned in the last section. If a process maintains a cache at a

local site, it can send a request to the daemon for watching any updating

activities going on, and the daemon will send a update request to the process

when it detects one. In this case, the process does not have to periodically

6a checking the currency of its cached information by itself. We will look into

.~ V2 13-
tm

the design issues involved in building such a caching scheme.

2.3.3. Multiple Copy Update:

We shall be looking into the performance, practicality and

implementation of the suggested algorithms. We shall try to find some

relations between the number of copies of an item of information and the

time required to access it; and also the period for which the system can

function (i.e. at least one copy of the information is still active). Additional

complexities can arise if some nodes fail during reconfiguration, etc. These

issues shall be looked into.

4

*I

d

'-V:;

-14-

3. ROUTING TECHNIQUES

3. Introducton

Our objective is to develop distributed and reliable routing techniques

for large and dynamic networks for military application. As in the actual

combat field, links and nodes can fail and recover at any rate at any time, it

is necessary that route must be adaptively changes and maintained as the

topology of the networks changes. Thus, in order for routing algorithms to

be useful in the battlefield, routing algorithms must be extremely reliable,

i.e. it must be able to adapt any arbitrary changes in network topology at

any arbitrary rate.

Our research thus follows three main steps: (1) distributed routing

algorithm, (2) hierarchical routing algorithm of fixed clustering structure,

.and (3) finally directory management to maintain and update the adaptive

clustering structure. We first investigated the distributed routing

techniques. since t..,y could be used in a dynamic environment. They could

I automatically change the route as the network change the topology, and they

are much more reliable than the centralized counterparts.

As the target network is assumed to be very large, conventional

nonhierarchical routing scheme could not be used. This is due to that fact,

the communicational overhead increase dramatically as network become very

large. We thus investigated the adaptive hierarchical routing algorithms for

hierarchical networks with fixed clustering structure, i.e. the clustering

structures of the networks do not change with time. The main criteria of

developing hierarchical routing schemes are that they must be reliable too,

as in the nonhierarchical case.

Finally since the target network is assumed to be mobile, the network

topology keeps on constantly changing, it is necessary from time to time to

change the clustering structure. Furthermore, it is necessary that the

resulting clustering structures are balanced, i.e. there are more or less same

AN number of nodes in each cluster. If the cluster is either too small or too

large, the overhead would be excessive. The clustering procedure should be

reliable too.

~~% It .4 S'

F, - l,5-

3.2. Past Achievements

Classification of Distributed Routing Techniques

We have proposed a classification scheme for distributed routing

algorithms based on data structures stored at each node. Most of the

distributed routing algorithms could be classified by this classification. This

classification gives the performance upper limit for each type of distributed

routing schemes. Thus, by using this classification, we could determine the

best performance that each distributed routing algorithm could achieve. We

have used this classification to evaluate many distributed routing protocols

proposed in the literature. Preliminary results have been reported in [TSA

82], and currently a paper is now in preparation.

An Adaptive Hierarchical Routing Algorithm

We have proposed an adaptive hierarchical routing scheme which has

many desirable properties [RAM 82, RAM 83]: it is distributed, is very reliable,

and works for any arbitrary hierarchical network of any levels. It uses many

routing controllers so that failure of any one of them would not halt the

operation of the network. The algorithm could reconfigure rapidly as

network changes the topology. The communicational and computational
overheads are also minimized. The proposed scheme is more robust than

Baratz's scheme [BAR 83]. It also does not have the loop problem as in [MCQ

74, KAM 76].

Classification of Adaptive Hierarchical Routing Techniques

Based on the classification of distributed routing algorithms, we have

further proposed a classification scheme for hierarchical routing protocols.

There are around 700 adaptive hierarchical routing schemes have been

identified under this classification for a 2-level hierarchical network [GRA 83,

RAM 84c]. This classification also gives the performance upper limit for each

type of hierarchical routing scheme. The proposed classification is better

than the previously proposed scheme [HAG 83], where only static hierarchical

routing scheme could be classified.

'44

16-

3.3. Current Research Progress

Directory Management

In large and dynamic networks, it is necessary to partition networks into

clusters in order for efficient control and management. Clustering of

networks has to be done in real time in order to response to the network

status change. There are several ways to do clustering: centralized,

distributed and hierarchical approaches. Centralized method first select a

controller in each network, after collecting all the topological information

from all other nodes, the controller then computes to obtain the best

clustering structure. The main disadvantage of this approach is that it is not

reliable. Distributed approach requires all nodes in networks to participate

in order to obtain the clustering structure The main disadvantage of this

approach is that it may take too much time to obtain the clustering

structure and the clustering structures obtained are not necessary optimal.

However, hierarchical approach could have advantages of both centralized

and distributed approaches without their advantages. Thus, hierarchical

approach will be pursued.

In order to obtain good clustering structures, we propose to cluster

networks as distributed B-tree's. A B-Tree is a tree with all leaves distributed

uniformly throughout the tree, and there is no side that has very large

number of leaves attached to it, while the other sides have only few leaves If

networks are partitioned as distributed B-tree's, each cluster will have more

or less same number of nodes within it. Networks %ith balanced clustering

are easier to manage and give better performance than networks with

unbalanced clusters. Since each cluster has more or less same number of

nodes, it is also easy to carry out reconfiguration if necessary.

Currently, we are designing various strategies, including hierarchical

centralized and hierarchical distributed methods, to 'cluster networks into

distributed B-tree's [RAM 84e].

.'4' . / " , , , ... ,. " :.,,.. z": .''. '- " "".-'. ..

-17-

Simulation

The simulators for the original Arpanet, the new Arpanet ant the

proposed adaptive hierarchical routing algorithms~ have been successfully

completed and documented this year [RAM 84a, RAM 84b]. Currently, we are

-collecting data and interpreting the result [RAM 84d].

3.4. Future Research Tasks

Directory Management

This task has just formulated this year with preliminary results [RAM

* 84e], we could see a lot work ahead.

Optim Clustering Structure

Given a network topology, traffic requirement and a hierarchical routing

algorithm, it is necessary to determine what is the optimal clustering

structure for operation. The clustering structure will affect the performance
a greatly. This can be illustrated by observing the effect of changing the size

of clusters of a 2-level networks. If the size of each cluster is one, then there

'.4 is no clustering effect. However, if the cluster is large enough to include all

-" the nodes in it, there is no clustering effect either.

-'-. We will cluster the networks so that the reliability would be optimized,

and communication and computational overhead would be minimized.

-V2

4% -

.4.

.4d v,4' _w ° - . - - w ' . ,
°

- , o 4 _q . - o ,. w . - o . . . - ° . , . ~ . o .

4. COMMUNICATION PROTOCOL SYNTHESIS

4.1. Introduction

Protocol synthesis is a process of designing new communications

protocols. The objective of developing automatic protocol synthesizer is to

provide a systematic way of designing protocols such that their correctness

can be ensured. Although protocol analysis methods are useful to various

extents in validating existing protocols, they do not provide enough

guidelines for designing new protocols. What designers need in designing new

protocols is some set of design rules or necessary and sufficient conditions to

0follow so that the protocols designed are guaranteed to be correct. Then, the

newly designed protocols need not go through the analysis stage to be

checked for their correctness.

4.2. Past Achievements

We have developed a systematic protocol synthesis procedure which

construct the peer entity from the given local entity which is modeled by a

Petri net.[Do831 If the given entity model satisfies certain specified

constraints, the protocol generated will possess those general logical

properties which are what a protocol synthesizer is looking for. The

synthesis procedure is very general. It is applicable to every layer of the

protocol structure.

To construct the desired peer entity model, there are three tasks which

should be conducted in sequence

(1) Check local properties of the given local entity model to make sure

that it is well-behaved. This can be done by generating and

examining the structure of its state transition graph.

(2) Construct the peer state transition graph from the above generated
state transition graph according to some well designed

transformation rules.

(3) Construct the peer entity model in Petri nets from the peer state

transition graph.

-,,--..-,,,

-19-

The protocols generated are guaranteed to be logically correct if the

given entity model satisfies certain desirable local properties. These

desirable local properties can also serve as guidelines in designing the given

entity model.

We have the Iollowing complete list of desirable local properties for the

given entity:

(1) Local completeness;

(2) Local boundedness;

(3) Local liveness;

(4) No undesirable terminal states in STGI;

(5) No cycles of send transition;

(6) No cycles of receive transitions; and

$ (7) Every reachable state in STGI can reach at least one of the desirable

terminal states.

Also APS (Automated Protocol Synthesizer) has been implemented as a

computer aided design tool on Vax 11/780 machine. The APS was

programmed in C language. The code size is 3.5 k lines long and occupies 20k

byte memory. It can accept a given entity model up to 50 places and 50

transitions. However, links between places and transitions are dynamically

allocated and hence there is no restriction placed on the maximum number

of links. Therefore, at the current version of APS, communication protocols

with moderate complexity can be adequately handled.

4.3. Future Research Tasks

(1) State Explosion Problem

The synthesis of complex communication protocols by using transition

oriented model is faced with state explosion problem. This problem not only

* complicates the validation of general protocol properties (such as deadlock-

freeness and proper termination) but also imposes further difficulties on the

analysis of performance and data transfer aspects of communication

protocol (such as timers and sequence numbers). Because Petri nets are a

-1 -20-

sort of transition oriented model, a resolution of state explosion problem is

urgently required. Since the complexity of communication protocol is

proportional to the number of reachable states, fundamental principle in

managing the complexity of protocol synthesis is to reduce the size of the

reachable state space. The Petri net abstraction technique has been

developed to achieve this objective. It originated from two sources, top-

down design methodology and hierarchical modeling capability of Petri nets.

The above technique becomes feasible in our APS because of hierarchical

modeling capability of Petri nets. In the Petri nets, an entire subnet can be

replaced by a single place or a single transition for modeling at a more

abstract model. On the other hand, we may also replace a place or transition

with a subnet to provide more detailed modeling. The former procedure is

called abstraction and latter elaboration. Abstraction is good for system

* analysis because it simplifies the model. However, elaboration is beneficial to

system design because the system design may start from a simple and easily

understood model. In order to insure that local properties still be analyzable

from reduced Petri nets, the abstraction cannot be performed arbitrarily.

The abstraction becomes meaningful only if the desirable protocol properties

are retained in reduced Petri nets. In designing local entity model, we locate

as many well-behaved modules as possible so that their replacement with

single transitions simplify the design procedure preserving certain desirable

properties of communication protocols. This procedure can be applied

recursively to reduced Petri nets themselves, and hence the overall

complexity of protocol synthesis can be substantially reduced.

(2) Error Rec3verable Protocol Synthesis

The development of automated protocol synthesizer is a rapidly growing

subject in many applications. However, in our approach, it was assumed that

the communication environment is perfect. The protocol synthesis

procedure can be extended to cover the circumstances associated with

unreliable links. Error recovery strategies such as time-out mechanisms,

error detection coding schemes and time-stamp mechanisms will be studied

to incorporate those strategies in entity models for handling various types of

communication errors.

q - . - .. - . -- . - . - . - .- . . , . F V - . - - * . - , - . . . - - j .

-21-

(3) Performance Evaluation of Communication Protocols

In order to study the performance of a protocol some indication of

elapsed time or execution time must be added to the formal protocol

specification. Once time is included in the specification, several paths open

for futur, automated exploration. Among the most important of these

potential paths to explore are:

(a) analysis of the protocol to check for logical correctness of the

protocol including the time specifications,

(b) simulation to predict performance, and

(c) analysis to predict performance.

* (a) Analysis including time specification

Analysis has traditionally been done considering only the sequence of

* "" events and not their duration. Adding the dimension of time duration means

that certain sequences in the protocol may no longer be possible; some

timeouts may never be executable; deadlocks may occur. Analysis including

time specification requires an examination of such errors of logical

correctness in the protocol This topic is probably the most difficult of the

three

(b) Simulation to predict performance

Simulation is a technique in which a machine-executable model of the

protocol is derived, the model is executed, and statistical records of its

performance made. Interpretation of these statistics leads to an estimate of

the performance. Usually, the machine-executable model is derived manually

from the description of a protocol, the possibility arises of automatically

6producing a machine-executable model for simulation of performance.

(c) Automated analysis to predict performance

Instead of using simulation to predict protocol performance, the

technique proposed here is direct analysis of the protocol specification.

.4.

o%.

6

-22-

5. CONTROL SCHEMES FOR PROCESS ALLOCATION

5.1. Introduction

A distributed computing system comprises a set of Interconnected

processing nodes that support various distributed computations. A

distributed computation is defined as multiple processes working collectively

towards a common goal. These processes interact with system objects

distributed over the nodes, and they also communicate with each other.

Overhead is incurred due to their consumption of system resources, such as

processor time and communication bandwidth. In particular, if a lot of

inter-node data communication is required, the communication overhead
imay impose a significant performance penalty on the distributed

computation.

We will address the problem of process allocation in a computer network

environment. In such an environment, distributed processes share the

system resources, such as communication bandwidth, computation power,

and data objects. These processes are created asynchronously at their birth

nodes, and they can be allocated to remote nodes for execution. Process

allocation is an optimization problem with multiple objectives including

communication overhead reduction and load balancing. This problem does

not exist in conventional single processor systems, whereas in multiple

computer systems, process allocation is a key factor to the efficient

utilization of distributed system resources.

5.2. Past Achievements

The general problem of process allocation is NP-complete. Therefore,

optimal allocation is infeasible except for certain special cases. We

discovered that when the interprocess communication graph is a tree, an

optimal allocation can be achieved with polynomial time complexity via a

dynamic programming algorithm For the general case, however, we have to

rely on heuristics that provide suboptimal allocations. An iterative

improvement heuristic is devised and its simulation experiments are

encouraging.

-23-

The distributed system configuration may be dynamically changing due
to the fluctuating workload and migrating objects. Furthermore, the runtime

behavior of a distributed computation may not be completely known a priori.

Therefore, the effectiveness of initial allocation may depreciate to such a

point that it becomes desirable to relocate the processes. We have devised

dynamic allocation schemes which employ distributed versions of the

aforementioned iterative improvement heuristics. They involve the

coordination of nodes on which the component processes of a distributed

computation are running. The synchronization scheme may allow only one

node at a time to improve the allocation of its processes, or it may allow

-' multiple nodes to proceed in parallel. Various sequential and parallel

, schemes are devised and analyzed.

5.3. Research Directions

We have studied various process allocation algorithms for distributed

_4 systems. Most solutions to the process allocation problem require global

information about the system configuration. In a distributed computing

system, all the information concerning remote nodes may not be locally

available. It may involve tremendous control overhead to collect necessary

information from nodes located at the far end of the network. Therefore it is

desirable to adopt allocation schemes that would use partial information

*' initially and collect necessary information as the computation proceeds.

We have devised both static and dynamic process allocation schemes for

distributed system environments. In our approach, the process allocation

will consist of two phases: initialization and improvement. During the

initialization phase, the processes are tentatively allocated using only the

information available to the controllers. During the improvement phase, the

allocation controllers collaborate so as to attain a mutually agreed allocation

that reduces the communication overhead as much as possible. Generally

the improvement phase is an iterative one. In every iteration, one or more

processes will be relocated, resulting in an improved configuration as the

basis for the next iteration. Therefore the objective function value - e.g.

communication overhead - will monotonically improve until a local optimum

-24-

is reached. This strategy stems conceptually from a variety of heuristics

used to solve NP-complete problems.

In order to provide a pragmatic approach for real-time process

allocation, various control and synchronization schemes will be evaluated.

The criteria used for comparison will be the communication overhead

incurred and the total execution time, including processing and queuing

delays. The execution time is dependent upon the processor load conditions

In order to minimize the total execution time, load balancing techniques will

also be examined.

..

%-.

Uj

4o.

- 25 -

6. WDAD SHARING IN DISTRIBUTED SYSTEMS

6.1. Introduction

In a general-purpose distributed system, it is desirable to automate the

allocation of processor resources across the network. Load-sharing is a policy

for redistributing the aggregate demand among the processors in the

network so that the overall performance of the system improves. In this

section, we discuss the general problem of load balancing, and discuss the

feasibility of migrating processes besides process allocation in a network as

already discussed in the last section.

Optimal load-sharing requires foreknowledge of the runtime

characteristics of all processes and is computationally expensive. A

suboptimal heuristic algorithm allocates in real time according to the

currently observed state. The fundamental question in devising a hevristic

load sharing policy is the dimension of the decision state. Policies that use

only information about the average behavior of the system ignoring the

current state , are termed static policies. Policies that react to current state

are termed dynamic policies. Static policies use no state information, hence

are simple, stable, but suboptimal in the sense that they do not react to the

current state of system On the other hand, dynamic policies have to

constantly update their state information. This arises the overhead problem

in maintaining the state information up-to-date and making wrong decisions

based on out-of-date information. This tradeoff is in the heart of our

-" research in finding a simple, stable load sharing policy that takes minimum

but meaningful current state into consideration in balancing the load across

the network.

"A.,

6.2. Past Accomplishments

The mean response time can be improved by redistributing the total

workload among processors by migrating processes from heavily loaded

processors to lightly loaded ones. A process that migrates from one

processor (the source) to another (the destination) incurs relocation and

communication cost. A migrating process incurs burden of address fixing

, - 26-

and message delivery on the originating processor. A migrating process has

to contend for the access to the communication network; hence, incurring

the communication cost.

The execution time for each process is assumed to.be exponentially

distributed with the parameter depending on the executing processor.

Relocation and communication delay are also assumed to be exponentially

distributed. Then the problem is formulated as a static (probabilistic

control policy for a set of queues to minimize the average response time. The

optimal rate of local and remote processing at each processor (in static

sense) is obtained.

Since the arrival rates at each processor may change in time, a simple

estimator for intensity function of the arrival process is derived. This

estimator determines how often the static optimization must be carried out.

Once the migration of a process has been sought, the load sharing

algorithm must choose which process should migrate from among those

resident on the overloaded processor. Factors that are important in choosing

the best process to migrate will also be discussed.

8.3. Research Directions

,, ~'We are studying various heuristic threshold policies. These policies are

simple, and use state information that their rate of change is such that every

node can have a correct view of the state at every node in the network.

" The definition of load in all the published work in this area is based on
the number of ready runnable processes. This metric for the load

measurement is simplistic. On the other hand, load is a fuzzy parameter. We

, intend to study the load sharing problem in the context of fuzzy logic and

4 approximate reasoning. Fuzzy logic provides simple solutions to complex

problems where the range of variables is fuzzy.

-27-

7. COORDINATION OF DISTRIBUTED COMPUTATION
'S

7.1. Introduction

In the former sections, we discussed important issues in the control and

management of a large distributed system Now, it has come to the point to

utilize these mechanisms as a underlying basis for real application programs

in a distributed environment. However, to support distributed computations,

we must consider the problem of coordination among those nodes that

participate in the computation. An effective strategy of coordination of the

distributed computation may achieve high resource utilization and the

desired degree of fault tolerance in the network. In the context of large

dynamic networks, this would help save some precious computation results in

a dynamically changing environment and satisfy the goal of real time5%
processing.

Since a large job in dynamic networks may require complex interactions

among different nodes, we propose to extend the idea of Make [Fel 78]

program to the case of distributed systems and use a MakefiLe to specify the

necessary interactions and job steps among working processes. The idea of a

distributed Makce program is to reduce the amount of effort required in

keeping track of what changes have been made by various people, working

together in a distributed environment on the same task, and repeat only that

part of a computation which is affected by the changes. There are three

potential advantages of using such a distributed Make program:

(1) Elimination of Redundant Job Steps. A user may not know that another

user has performed some computations at a remote site but a Make

program can find that out and avoid redundant computations.

(2) Potential Load Balancing. In a network, there are usually some nodes

sitting idle or lightly loaded. If a job requires substantial amount of

computation, the load can be distributed to a set of nodes, and the Make

program could take care of the coordination task among these nodes.

" (3) Fault Tolerance. For large jobs, we would like to save the computation

results even when some nodes which participate in the computation fail.
'SN

-28-

The way to recover a computation can be specified either in the Makefile

or the Make program can take care of some default recovery action. This

idea would be elaborated later in this section.

7.2. Research Directions

To use the Make program, a user has to specify the computation steps

and dependent files necessary to make a target file in the MakefitLe The

specification language used to build the Makefite limits the capability of the

Make program. We will study this problem further later on. For the present,

let us examine a simple Makefile and use this example to illustrate the

*interactions among the set of computing components. This following

Makefite is used to specify a computation which makes a book; chapter 1 has

-some graphs, chapter 2 has some tables and equations, and chapter 3 has

some graphs and equations. Therefore, corresponding filters are used to

preprocess individual chapters:

book: chl.g ch2.te ch3.ge

ditroff -Pip -ms -t chl.g ch2.te ch3.ge > book

lpr -Pip -n book

chl.gr: chI fl.g f2.g

grnt -Pip ch I > ch L.g

ch2.te: ch2

*tbl ch2 I eqn > ch2.te
ch3.ge: ch3 3 g

grn -Pip I eqn > ch3.ge

The data dependence graph and control dependence graph derived from this

file are shown in Fig. la and Fig. lb. To facilitate the discussion, we define

the following terms which are used in our model:

Coordinator: the process which runs the Make program and

coordinates the computation among participating nodes.

t OIr Is a filter used to process line drawing commands created by a graphical
package(developed at Berkeley) called Ormernin.

'% a"o N

-29-

Worker: a process which participates in the computation.

Daemon: a process that monitors the status changes of the

coordinators and participants of the computation as

mentioned in section 2.

'book 0
ch l.Sr ch2te

chi ! 1.g i2.8 ch2 Ihg 1

Fig. Ia Data Dependence Graph of the MakefiLe

4'

pp.o

4.',

-30- 2 3

Fig. Ib Control Dependence Graph of the Makefile

A job is defined as a tree of computation as can be seen in Fig. lb. Note

that square nodes connected by arrows specify sequential control

*I dependence, while a fork of two nodes specify the pipeline dependence;

otherwise, the processes are independent. As we can see from the above

example, the two computational steps (ditroff and lpr) of book has serially

dependent, and the two computational steps of ch2.te are pipelined. The

book depends on three files: chl.g, ch2.te, and ch3.ge, and chlgr depends

on chl, f 14, f24g, and so on. Chl4gr, ch2.te and ch34ge may be independently

processed, and later on, they may be combined together to form the book. We

see that the Muicefile provides us with sufficient information about the

control dependence and data dependence. Therefore, we could use this

information to decide whether two processes can be distributed to different

nodes or not. However, the current Macefte format is not sufficient for our

purpose in specifying all requirements of distributed computations; e.g. for

some particular application, we may want to restrict the distribution of

computation to a particular subset of nodes. We would like to develop in the

=

-31 -

future a new language to be used in specifying distributed computation in

Make.file.

The Make program(i.e., the Coordinator) starts by examing the MakefiLe

and interacts with the file server to get the update time of all related files

and decide what job steps have to take. The coordinator then select nodes to

participate in the computation according to the constraints imposed in the

Makefile$. Then, a working request is sent to each participating node to

create a worker process and a corresponding request is sent to the daemon

server to ask for watching the status changes of that node. After that, the

coordinator waits for two things:

(1) Message of completion or results from the workers. The coordinator may

- initiate another computation step at this time if allowed according to
the control dependence graph.

(2) Message from the deamon regarding the failure of some worker. In that

case, the coordinator can select another node to initiate a new worker

process or abort the whole computation according to the specification of

the Maikefile.

Many issues are involved in building a distributed Make program:

- What is the right way to specify data dependence and control

dependence in the Makefile? Is the scheme used in Unix sufficient) If

Unix scheme is used, what assumptions regarding the file servers have to

- be made?

What is the right strategy to select nodes to participate in a particular

computation? Note that depending on the semantics of a command in

the Makefile, there will be certain restrictions imposed on the node

selection. For example, user may find it necessary to execute certain

commands at particular nodes because of location-dependence within

the command. Even if the user places no restriction on selection of

$ The selection algorithm may it self be a research problem in load balancing as
discusses in section 5 and section 6.

-32-

nodes, the Make program may have to introduce some restrictions so

that heterogeneity of nodes doesn't cause a problem.

- How do you handle the problem of node failures? Should we abort the

computation or select a new node to continue the processing? Could a

. user specify in his Makelile about what he wants to do when some node

fails'

- How is it decided by the Mace program that a file to be used in the

computation has been updated since last use? This problem may be

* complicated if the files are replicated and clocks of various file servers

are not synchronized.

We intend to investigate the above issues and find the answers in this project.

a,.

a..
*

'.

r.4o .

*,,

..'

4

- 33 -

8. INTELIGENT CONTROL IN LOCAL DISTRIBUTED ENVIRONMENT

8.1. Introduction

Both database (DB) and artificial intelligence (Al) systems must

represent and process knowledge about the real world. Although most of the

researches in these areas have been conducted along their own lines, they

are essentially complementary in the sense that both fields have a great deal

to contribute to each other: DB has more practical experience in security,

efficiency, and reliability; Al has developed more sophisticated techniques for

representing the meaning of data and solving complex problems in specific

task domains, e.g. expert systems.

In this research we are interested in the application of both Al and'

-* database technologies to a specific domain, dynamic computer networks.

Across a large spectrum of interesting subjects related to this area we are

attacking three major problems:

a) Communication Subnet Interconnections: Assume each node in the

* network has limited capacity in terms of computation as well as

"-" communication loads (say, I for computation and d for communication,

i.e. at any time, at most one computation can be running and at most d

communication flows are allowed to pass through at any node). The

communication subnet interconnection problem can be formulated as

follows: Given the current configuration of the network and a

specification of net(s) to be connected, how can we conduct the

interconnections such that the specification is satisfied and none of the

- nodes in the network is overloaded (in terms of either computation and

communication). Furthermore, once the subnets are interconnected, the

*.' .connectivity of them should be maintained subject to the dynamics of

the system

* b) Query Processing: One of the major problems of distributed systems is

database. Basic database operations include selection, projection, and

join. In distributed systems query processing is complicated by the

communication cost due to the data transfer among nodes. In the

context of local dynamic networks, query processing is different from

V V V V % V V

-34-

that of ordinary distributed systems for

(i) Concurrent processing is feasible

(ii) Communication links can be set up more flexibly and therefore

affects the communication cost involved

(iii) The interconnection problem underlied

c) Control: As the requests for subnet interconnections and query

processing may arise continuously, certain control to resolve resource

conflicts and to assure the global performance of system is necessary.

- . Again, the control problem is seriously affected by the dynamics of the

, system.

8.2. Past Achievement

Most of the related work in the area of dynamic communication

networks were conducted in the subjects of routing [RAM 831 and

hierarchicalization [RAM 84a]. The proposed communication subnet
b",

interconnection problem differs from the routing problem in the following

sense:

- a) Routing problem focuses on the point to point (i.e. only two points are

involved) communications issues while the subnet interconnection

.' problem concerns mostly multi-point communication problems.

b) The subnet interconnection problem regards net maintenance as an

"-' ~-integral part of the problem.

On the other hand, unfortunately, no query processing or control issues

have been seriously considered in the literature.

8.3. Current Research Progress

The work been conducted during the report period can be summarized

as follows:

a) Representation and Modeling Techniques: The network state can be

directly modeled by two proposed constructs: the access graph, where

each node is a vertex and two nodes are connected by an edge if they

have direct communication link, and the availibility graph, where two
-~~~~~~~~ P4

-35-

nodes are connected by an edge if there is some available communication

capacity between them.

b) Subnet Construction Problem The subnet construction problems can be

classified into three categories, according to the specification given:

(i) It has only two nodes, or

(ii) It has multiple(more than 2) nodes, or

(iii) It has a set of multiple nodes(2 or more).

Case(i) can be solved easily by the shortest path algorithm. Case (ii) can

be reduced to the Steiner tree problem and is proved to be NP-complete.

Case (iii) is found to be similar (but more complicated) to the circuit routing

* problem and unfortunately is again an NP-complete problem. Heuristics

taking into account load balancing for case (ii) and case(iii) have been

developed. Emphasis have also been placed on the following issues:

(i) If all of the heuristics fail to interconnect the nodes involved, how

to disturb the least number of existing nets such that those

disturbed nets can be re-interconnected to accommodate the new

net(s).

(ii) Rules about congestion removements, redundancy removements

and reinterconnections.

c) Query Processing: A parallel pipelined multi-relation join algorithm has

4 been developed and proven to be better than any of the existing

methods. Tradeoffs between communication and computation are also

considered. The relationship between the computation issues and the

underlying interconnection issues have also been considered.

d) Control: Algorithms to schedule communication requests are developed.

All requests are regarded as competing goals and can be classified into

accomplished goals and pending (unsuccessful) goals. Movements of goals
between classes due to events (e.g. node/link addition/deletion, net

removernents) are dynamic. Procedures for forward reasoning (event and

state driven) and partial result saving are developed. To improve the

performance, preemption is introduced and an algorithm based on

backward reasoning which creates least perturbation is derived. Meta-

:, 4 --- A . - .. , ", ', ,-, : , " . ,- ,
" . - r , - , ' , ' , ' ' , ' ' : t '

, , e " ,: - - . - ' ' 1

- 36-

control issues like resource relocation are also considered.
, ,A

e) Knowledge base and Database support: Since the algorithms (heuristics,

experts) introduced above access high order objects such as access

graph, access graph with net labeling, it will be wise to place these

objects in the database. However, instead of storing the objects directly,

deftnition(knowledge) of the objects can be stored and objects can be

derived dynamically. Nevertheless, the objects may be required to be

* stored explicitly if the access frequency is high. Guidelines to make such

decisions are developed. Currently, deductive knowledge about the high

order objects based on the first order logic have been developed. On the

O 1 other hand, active forward knowledge(rules) about maintaining the

4* objects are also completed. Methods to deduce automatically the active

rules from deductive knowledge are also developed

8.4. Future Research Tasks

Our future work along this direction will be conducted in the following

issues:

1) network state estimation without continuous state reporting.

Specifically, we are interested in deriving the network state like relative

locations based on partial knowledge, for instance, neighboring events,

2) performance evaluation and comparison among the algorithms

developed,

3) other meta control mechanisms in the control area, for instance,

scheduling function discrimination.

:4'

- 37-

9. SUMMARY

Our proposal on the design and management of large, dynamic, and

unreliable distributed networks can be summarized as follows:

(i) In the area of global information management, we will

a) develop appropriate algorithms for the problems of

synchronization, multiple-update, data collection, accessing of

global information and currency in the dynamic environment.

b) investigate the impact of radio communication

c) improve the Byzantine agreement algorithm by distinguishing

read and update accesses.

d) study the problems of hierarchicalizing, which include the choice
of number of levels, the allocation of positions in the hierarchy

to nodes in the network, etc.

(ii) In the area of routing control, we will study the following issues:

a) distributed clustering algorithrrs

b) classification and comparison of distributed, hierarchical routing

algorithms

c) routing information update protocols

d) directory management

e) simulation and performance evaluation

(iii) In the area of comrnunication protocol analysis/synthesis, we will

study the following issues:

a) state explosion problem

b) error recoverable protocol synthesis

c) performance evaluation of communication protocols

- 38-

(iv) In the area of process alocation, we will study the following issues:

a) static and dynamic process allocation schemes

b) evaluation of various control and synchronization schemes

(v) In the area of load sharing, we will study the following issues:

a) static and dynamic load sharing policies

b) various heuristic threshold policies

c) the load sharing problem in the context of fuzzy logic and

approximate reasoning

(vi) In the area of coordination of distributed computa.tion, we will study

the following issues:

a) design of a distributed Make program

b) the usage of daemon in a distributed system

c) the design of a specification language for distributed

computation

(vii) In the area of intelligen control, we will study the following issues:

a) representation and modeling techniques

b) subnet construction problems

Sc) query processing
.. qu r

d) control algorithms

e) knowledge base and database support

f) alternative cellular structures under which performance can be

optimized

g) network state estimation without continuous state reporting

h) performance evaluation and comparison among the algorithms

developed

i) other meta control mechanisms in the control area

REFERENCES

[BAR 83] Baratz, A., et al., "Establishing Virtual Circuits in Large Computer

Networks," Proc. of INFOCOM 83, San Diego, CA, April 1983.

[BER 81] Bernstein, Philip A.,et. al.. "Concurrency Control in Distributed Database

Systems." Computing Surveys, Vol.13, No.2, June 1981.

[BIR 82] Andrew D. Birrel, et. al. "Grapevine: An Exercise in Distributed

Computing." Communications of the ACM, Vol. 25, No. 4. April 19B2, pp.

260-274.

[DON 83] Dong, S.T., "The Modeling, Analysis and Synthesis of Communication

*Protocols". Ph.D. Dissertation. Dep't of EECS, U.C. Berkeley, 1983.

. [FEL 78] S. I. Feldman. Unix Programmers' Manual, Vol. 2, Bell Laboratories.

Murray Hill. New Jersey 07904, August, 1978

[FIS 83] Fischer. Michael J.. 'The Consensus Problem in Unreliable Distributed

Systems: A Survey," YALEU/DCS/RR-273, June 1983.

[CAN 84] Ganesh, Shivaji L., Ph.D. Dissertation, University of California, Berkeley,

Jan. 1984.

[GRA 83] GrafT, C.. et al., "Control Functions in Distributed Systems," Proc. of IEEE

International Workshop on Computer Systems Organization. New

Orleans. Louisiana, March 1983.

[HAG 83] Hagouel, J.. "Issues in Routing for Large and Dynamic Networks," Ph.D

Thesis, Dept. of Electrical Engineering, Columbia University, April 1983.

(KAM 76] Kamoun. F., "Design Considerations for Large Computer Communication

Networks." UCLA-ENG-7642, 1976.

[KIM 79] Kim KH., "Error Detection, Reconfiguration and Recovery in Distributed

Processing Systems." Proc. 1st Int'l Conf. on Distributed Computing

Systems, Oct. 1979.

4,

[KOH 81) Kohler. Walter H., "A Survey of Techniques for Synchronization and

Recovery in Decentralized Computer Systems," Computing Surveys,

Vol.13. No.2. June 1981.

[LAM 78] Lamport. Leslie, 'Time. Clocks, and the Ordering of Events in a

Distributed System'" CACM, Vol.21, No.?. July 1978.

(LAM 80] Lamport, L, R. Shostak and M. Pease, "Reaching Agreement in the

Presence of Faults." JACM, Vol.27, No.2, April 1980.

[LAM 84] Lamport. Leslie, "Using Time instead of Timeout for Fault-Tolerant

Distributed Systems," ACM Trans. on Prog Langs, Vol.6. No.2, April 1954.Ditrbue A'qrns 1'4

[MCQ 74] McQuillan, J., "Adaptive Routing Algorithm for Distributed Computer

Networks," Ph.D Thesis, Harvard University. Cambridge, MA, May 1974.

[POW 83] Michael L Powell and David L Prestto. "Publishing: A Reliable Broadcast

Communication Mechanism" Proceedings of the 9th SOSP, Operating

Systems Review, Vol. 17. No. 5. November 1983. pp. 100-109.

[RAB 83] Rabin, M.0. "Randomized Byzantine Generals," Harvard University

research report, 1983.

[RAM 82a] Ramamoorthy, C.V. and S.LGanesh, "Global Information Management,"

UCLA Packet Radio Analytical Workshop. Aug. 1982.

[RAM 82bJ Ranmamoorthy, C.V., and Tsai, W.-T., "Update Protocols for Hierarchical

Routing Algorithms," Proc. of Packet Radio Analytical Workshop, UCLA,

r. 5. Aug. 1982.

[RAM 83] Ramaioorthy. C.V., and Tsai, W.-T., "An Adaptive Hierarchical Routing

Algorithm." Proc. of Compsac. Nov. 1983.

[RAM 84a] Ramamoorthy. C.V., Nishiguchi. 0., and Tsai, W.-T., "Simulation of

% ,Hierarchical Routing Algorithms," Report No. UCB/CSD 84/185,

Computer Science Division. University of California. Berkeley. California

94720.

ib

[RAM B4b] Ramamoorthy, C.V., Nishiguchi. 0., and Tsai. W.-T.. "Simulation Programs

of Routing Algorithms." Computer Science Division, University of

California. Berkeley, California 94720.

[RAM 84c] Ramarnmoorthy, C.V.. and Tsai. W.-T., "Update Protocols for Hierarchical

Networks." in preparation, Computer Science Division, University of

California, Berkeley, California 94720.

[RAM 84d] Ramarnoorthy. C.V., Nishiguchi, 0., and Tsai, W.-T., "Performance

Evaluation of Hierarchical Routing Algorithms," in preparation,

- Computer Science Division, University of California, Berkeley, California

94720.

* [RAM 84e] Ramamoorthy. C.V.. et al., "A Directory Management Algorithm for

Dynamic Networks," submitted for publication, 1984.

[RAN 75] Randell, B., "System Structure for Software Fault Tolerance," IEEE

Trans. on Software Engineering, June 1975, pp. 220-232.

[STO 83] Stockmeyer. L. D. Dolev and C. Dwork, "On the Minimal Synchronism

Needed for Distributed Consensus," Stanford University research

report, 1983.

[TSA 82] Tsai, W.-T., "Routing Techniques for Dynamic Computer Networks," M.S.

Report, Computer Science Division, University of California, Berkeley, CA

94720, Aug. 1982.

[WAH 79] Wah, B.W., "A Systematic Approach to the Management of Datu in

Distributed Databases," Ph.D. Dissertation. University of California,

Berkeley, Aug. 1982.

!A-

APPENDIX - Thems Written Under BlD Project

Following is a list of all Ph.D. Dissertations written under BMD project. A copy

of each dissertation is attached at the end of this report.

*' [MA 81] Ma. Y.W., 'Techniques for Design and Management of Dynamc Computer

Networks", Ph.D. Dissertation, University of California. Berkeley,

November 1981.

[DON 83] Dong, S.T., "The Modeling. Analysis and Synthesis of Communication

Protocols", Ph.D. Dissertation, University of California, Berkeley, April

1983.

[GAN 84] Ganesh. Shivaji L., "Availability and Consistency of Global Information in

Computer Networks", Ph.D. Dissertation, University of California.

Berkeley. Jan. 1984.

.4.

-.,

'Pow.~

a

- L - -

.7,

'4%

Sc-.

FI

A r~ , r ~ ~ , a •,t w ~ r I r ,l~ ' '' . . I o r , I " q q I , , r " i

